

YEAR 12 MATHEMATICS SPECIALIST

Test 1, 2023 Section One: Calculator Free Complex Numbers and Functions

STUDENT'S NAME:

DATE: Thursday 16th March

TIME: 40 minutes

MARKS: 40 **ASSESSMENT %**: 10

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser Special Items:

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

This page has been intentionally left blank.

2023

Question 1

(10 marks)

Consider the following complex locus for z.

 Im
 Im
 Im

 4

(a) Represent the above locus using, but not necessarily limited to, the following.

i) Using the Absolute Value/Magnitude function. (2 marks)

ii) Using Re(z) and/or Im(z).

(1 mark)

iii) Using
$$Arg(z + a)$$
, $Arg(z + b)$ and \cup (union), where $a, b \in \mathbb{C}$. (2 marks)

2023

Consider the following locus |w - 6 - 2i| = 2.

(b) Sketch the locus on the diagram provided at the beginning of this question. (2 marks)

(c) Determine the maximum and minimum values of Arg(w). Include a sketch in your working out to aid your response. (3 marks)

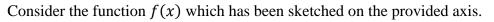
2023

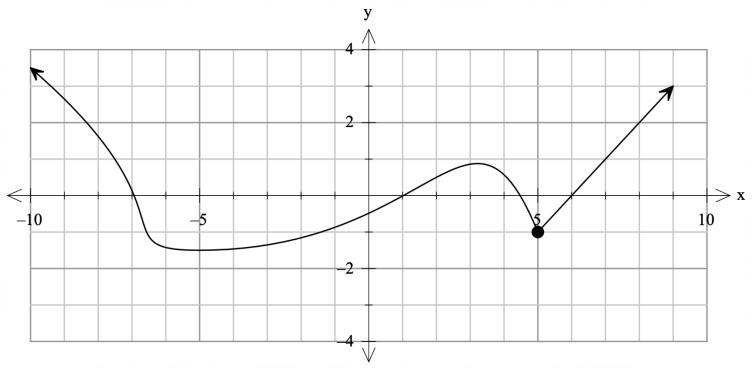
Question 2

(3 marks)

Prove and state the conditions of |z| and Arg(z) for which $\overline{z} = z^{-1}$, $z \in \mathbb{C}$.

Question 3


(5 marks)


Consider the function $f(z) = z^4 - 4z^3 + 9z^2 - 16z + 20$ where $z \in \mathbb{C}$. Solve f(z) = 0 if z - (2 + i) is a factor of f(z).

2023

Question 4

(9 marks)

(a) On the above axis sketch f(|x|) over the domain $x \le 0$. (2 marks)

(b) On the above axis sketch
$$\frac{1}{f(x)}$$
 over the domain $x \ge 0$. (3 marks)

(c) State when
$$f(x) = |f(x)|$$
.

(1 mark)

(d) g(x) = f(x) for the values $5 \le x \le 6$. If g(x) = -|ax + b| + c, determine the values of a, b and c. (3 marks)

(3 marks)

Question 5

Calculate and state the nature of all asymptotes to the equation $f(x) = \frac{x^2 + 4x - 7}{x - 1}$.

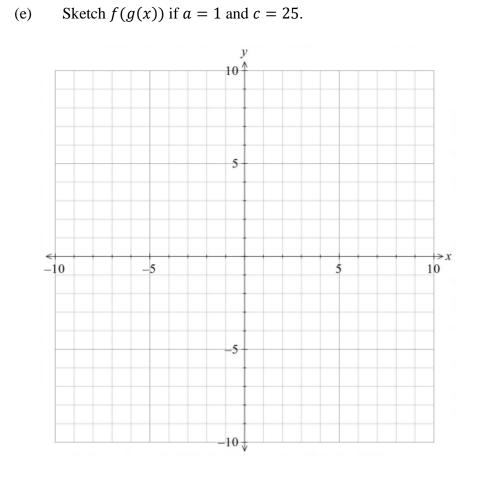
2023

Question 6

(10 marks)

Consider the two equations: $f(x) = \sqrt{x-9}$ and $g(x) = -ax^2 + c$ $a, c \in \mathbb{R}$, $a \ge 0, c \ge 9$.

(a) Determine $f^{-1}(x)$ and state the domain and range. (3 marks)


(b) Determine f(g(x)).

(1 mark)

(c) Show and briefly explain how the generalised range of f(g(x)) is $0 \le y \le \sqrt{c-9}$. (2 marks)

(d) Show and briefly explain how the generalised domain of f(g(x)) is

$$\frac{-\sqrt{4a(c-9)}}{2a} \le x \le \frac{\sqrt{4a(c-9)}}{2a}$$

(2 marks)

END OF QUESTIONS

YEAR 12 MATHEMATICS SPECIALIST

Test 1, 2023 Section Two: Calculator Allowed Complex Numbers and Functions

STUDENT'S NAME:

DATE: Thursday 16th March

TIME: 10 minutes

MARKS: 10 **ASSESSMENT %**: 10

INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:1 A4 page notes, Classpad, Scientific Calculator

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

This page has been intentionally left blank.

Question 7

(10 marks)

Consider the equation $z^5 = 16 + 16\sqrt{3}i$, where $z \in \mathbb{C}$.

(a) Give exact solutions to the equation in the form $rcis\theta$ where $0 \le \theta \le 2\pi$. (4 marks)

CALCULATOR ALLOWED

2023

If w is the solution with the smallest argument and u is the solution with the largest argument:

(b) State w and u. (1 mark)

(c) Determine Re(wu).

(d) Determine $|3w^3|$.

(1 mark)

(2 marks)

(e) Determine *a* if $a \in \mathbb{R}$ and $Arg(w + a) = \frac{\pi}{2}$. (2 marks)